Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543984

RESUMO

Understanding pedestrian dynamics at bottlenecks and how pedestrians interact with their environment-particularly how they use and move in the space available to them-is of safety importance, since bottlenecks are a key point for pedestrian flow. We performed a series of experiments in which participants walked through a bottleneck individually for varying combinations of approaching angle, bottleneck width and walking speed, to investigate the dependence of the movement on safety-relevant influencing factors. Trajectories as well as 3D motion data were recorded for every participant. This paper shows that (1) the maximum amplitude of shoulder rotation is mainly determined by the ratio of the bottleneck width to the shoulder width of the participant, while the direction is determined by the starting angle and the foot position; (2) the 'critical point' is not invariant to the starting angle and walking speed; (3) differences between the maximum and minimum speed values arise mainly from the distribution of deceleration patterns; and (4) the position of crossing shifts by 1.75 cm/10 cm, increasing the bottleneck width in the direction of origin.


Assuntos
Pedestres , Velocidade de Caminhada , Humanos , Segurança , Caminhada , Movimento , Acidentes de Trânsito
2.
Sci Rep ; 12(1): 14273, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995966

RESUMO

Despite considerable research efforts, most controlled empirical studies on crowd movement usually rely on homogeneous crowds, i.e., research participants are typically young adults without disabilities. Consequently, relatively little is known about pedestrian movement in more diverse and heterogeneous crowd conditions, e.g., when persons with reduced mobility are present. This gap may be particularly relevant at bottlenecks, along the path of a moving crowd, that limit the capacity of pedestrian flow. Here, we present results from 12 studies in which participants (total N = 252) with and without visible disabilities moved together in a crowd. In each study, groups of participants walked together in a hallway with a bottleneck at the end. The point of speed adoption, distances between neighbours, and behavioural activities were analysed. We found (1) that participants with disabilities reduced their speed further away from the bottleneck than participants without disabilities; (2) participants without disabilities stayed closer to neighbors with disabilities than to neighbors without disabilities; and (3) participants interacted and communicated with each other to organise in front of the bottleneck. These results underline the importance of studying representative and heterogeneous samples in crowd dynamics. We also argue that more interdisciplinary research is needed to better understand the dynamics of interactions between neighbors in a crowd. A more nuanced understanding of pedestrian dynamics holds the promise of improving the validity of simulation tools such as movement and evacuation models.


Assuntos
Pessoas com Deficiência , Pedestres , Simulação por Computador , Aglomeração , Humanos , Movimento , Adulto Jovem
3.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808470

RESUMO

There are currently no standard methods for evaluating gait and balance performance at home. Smartphones include acceleration sensors and may represent a promising and easily accessible tool for this purpose. We performed an interventional feasibility study and compared a smartphone-based approach with two standard gait analysis systems (force plate and motion capturing systems). Healthy adults (n = 25, 44.1 ± 18.4 years) completed two laboratory evaluations before and after a three-week gait and balance training at home. There was an excellent agreement between all systems for stride time and cadence during normal, tandem and backward gait, whereas correlations for gait velocity were lower. Balance variables of both standard systems were moderately intercorrelated across all stance tasks, but only few correlated with the corresponding smartphone measures. Significant differences over time were found for several force plate and mocap system-obtained gait variables of normal, backward and tandem gait. Changes in balance variables over time were more heterogeneous and not significant for any system. The smartphone seems to be a suitable method to measure cadence and stride time of different gait, but not balance, tasks in healthy adults. Additional optimizations in data evaluation and processing may further improve the agreement between the analysis systems.


Assuntos
Marcha , Smartphone , Adulto , Humanos , Fenômenos Mecânicos , Equilíbrio Postural
4.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802810

RESUMO

For our understanding of the dynamics inside crowds, reliable empirical data are needed, which could enable increases in safety and comfort for pedestrians and the design of models reflecting the real dynamics. A well-calibrated camera system can extract absolute head position with high accuracy. The inclusion of inertial sensors or even self-contained full-body motion capturing systems allows the relative tracking of invisible people or body parts or capturing the locomotion of the whole body even in dense crowds. The newly introduced hybrid system maps the trajectory of the top of the head coming from a full-body motion tracking system to the head trajectory of a camera system in global space. The fused data enable the analysis of possible correlations of all observables. In this paper we present an experiment of people passing though a bottleneck and show by example the influences of bottleneck width and motivation on the overall movement, velocity, stepping locomotion and rotation of the pelvis. The hybrid tracking system opens up new possibilities for analyzing pedestrian dynamics inside crowds, such as the space requirement while passing through a bottleneck. The system allows linking any body motion to characteristics describing the situation of a person inside a crowd, such as the density or movements of other participants nearby.


Assuntos
Pedestres , Aglomeração , Cabeça , Humanos , Movimento (Física) , Movimento
5.
PLoS One ; 11(11): e0166908, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27870880

RESUMO

How humans resolve non-trivial tradeoffs in their navigational choices between the social interactions (e.g., the presence and movements of others) and the physical factors (e.g., spatial distances, route visibility) when escaping from threats in crowded confined spaces? The answer to this question has major implications for the planning of evacuations and the safety of mass gatherings as well as the design of built environments. Due to the challenges of collecting behavioral data from naturally-occurring evacuation settings, laboratory-based virtual-evacuation experiments have been practiced in a number of studies. This class of experiments faces the traditional question of contextual bias and generalizability: How reliably can we infer humans' behavior from decisions made in hypothetical settings? Here, we address these questions by making a novel link between two different forms of empirical observations. We conduct hypothetical emergency exit-choice experiments framed as simple pictures, and then mimic those hypothetical scenarios in more realistic fashions through staging mock evacuation trials with actual crowds. Econometric choice models are estimated based on the observations made in both experimental contexts. The models are contrasted with each other from a number of perspectives including their predictions as well as the sign, magnitude, statistical significance, person-to-person variations (reflecting individuals' perception/preference differences) and the scale (reflecting context-dependent decision randomness) of their inferred parameters. Results reveal a surprising degree of resemblance between the models derived from the two contexts. Most strikingly, they produce fairly similar prediction probabilities whose differences average less than 10%. There is also unexpected consensus between the inferences derived from both experimental sources on many aspects of people's behavior notably in terms of the perception of social interactions. Results show that we could have elicited peoples' escape strategies with fair precision without observing them in action (i.e., simply by using only hypothetical-choice data as an inexpensive, practical and non-invasive experimental technique in this context). As a broader application, this offers promising evidence as to the potential applicability of the hypothetical-decision experiments to other decision contexts (at least for non-financial decisions) when field or real-world data is prohibitively unavailable. As a practical application, the behavioral insights inferred from our observations (reflected in the estimated parameters) can improve how accurately we predict the movement patterns of human crowds in emergency scenarios arisen in complex spaces. Fully-generic-in-parameters, our proposed models can even be directly introduced to a broad range of crowd simulation software to replicate navigation decision making of evacuees.


Assuntos
Ciências Biocomportamentais , Aglomeração , Tomada de Decisões , Redução do Dano , Navegação Espacial , Feminino , Humanos , Masculino
6.
Chaos ; 20(4): 041109, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21198070
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...